Title of article :
Error estimates for a finite element–finite volume discretization of convection–diffusion equations
Author/Authors :
Deuring، نويسنده , , Paul and Mildner، نويسنده , , Marcus، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
17
From page :
785
To page :
801
Abstract :
We consider a time-dependent linear convection–diffusion equation. This equation is approximated by a combined finite element–finite volume method: the diffusion term is discretized by Crouzeix–Raviart piecewise linear finite elements, and the convection term by upwind barycentric finite volumes on a triangular grid. An implicit Euler approach is used for time discretization. It is shown that the error associated with this scheme, measured by a discrete L ∞ – L 2 - and L 2 – H 1 -norm, respectively, decays linearly with the mesh size and the time step. This result holds without any link between mesh size and time step. The dependence of the corresponding error bound on the diffusion coefficient is completely explicit.
Keywords :
Barycentric finite volumes , error estimates , Convection–diffusion equations , Combined finite element–finite volume method , Crouzeix–Raviart finite elements , Upwind method
Journal title :
Applied Numerical Mathematics
Serial Year :
2011
Journal title :
Applied Numerical Mathematics
Record number :
1529692
Link To Document :
بازگشت