Title of article :
Galerkin methods for the ‘Parabolic Equation’ Dirichlet problem in a variable 2-D and 3-D topography
Author/Authors :
Antonopoulou، نويسنده , , D.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
18
From page :
17
To page :
34
Abstract :
The problem analyzed in this paper is a model for the Narrow Angle parabolic approximation of Helmholtz equation in environments in R n , n = 2 , 3 , of variable topography used in underwater acoustics. By applying a horizontal bottom transformation combined with an exponential one, we present this Schrödinger-type Dirichlet initial and boundary-value problem in a weak formulation and prove the uniqueness of weak solution. Further, we construct Galerkin semidiscrete and Crank–Nicolson fully discrete schemes. We prove stability of numerical solution, analyze the error and prove estimates of optimal order in the L 2 -norm. For the 2-D case, we numerically verify the optimal order of accuracy and present numerical results for some standard Benchmark acoustical problems.
Keywords :
Galerkin methods , Crank–Nicolson schemes , error estimates , Parabolic equation , Underwater Acoustics , Numerical experiments
Journal title :
Applied Numerical Mathematics
Serial Year :
2013
Journal title :
Applied Numerical Mathematics
Record number :
1529750
Link To Document :
بازگشت