Title of article :
Rate of convergence of higher order methods
Author/Authors :
Steihaug، نويسنده , , Trond and Suleiman، نويسنده , , Sara، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
13
From page :
230
To page :
242
Abstract :
Methods like the Chebyshev and the Halley method are well known methods for solving nonlinear systems of equations. They are members in the Halley class of methods and all members in this class have local and third order rate of convergence. They are single point iterative methods using the first and second derivatives. Schröderʼs method is another single point method using the first and second derivatives. However, this method is only quadratically convergent. In this paper we derive a unified framework for these methods and show their local convergence and rate of convergence. We also use the same approach to derive inexact methods. The methods in the Halley class require solution of two linear systems of equations for each iteration. However, in the Chebyshev method the coefficient matrices will be the same. Using the unified framework we show how to extend this to all methods in the class. We will illustrate these results with some numerical experiments.
Keywords :
Nonlinear system of equations , Newton?s methods , Schr?der?s method , Chebyshev?s method , Halley?s method
Journal title :
Applied Numerical Mathematics
Serial Year :
2013
Journal title :
Applied Numerical Mathematics
Record number :
1529783
Link To Document :
بازگشت