Title of article :
Stopping rules for iterative methods in nonnegatively constrained deconvolution
Author/Authors :
Favati، نويسنده , , P. and Lotti، نويسنده , , G. and Menchi، نويسنده , , O. and Romani، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
13
From page :
154
To page :
166
Abstract :
We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x ⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods.
Keywords :
Nonnegatively constrained deconvolution , Iterative Methods , stopping rules
Journal title :
Applied Numerical Mathematics
Serial Year :
2014
Journal title :
Applied Numerical Mathematics
Record number :
1529879
Link To Document :
بازگشت