Title of article :
Higher order uniformly convergent continuous/discontinuous Galerkin methods for singularly perturbed problems of convection-diffusion type
Author/Authors :
Zhu، نويسنده , , Peng and Xie، نويسنده , , Shenglan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
12
From page :
48
To page :
59
Abstract :
In this paper, we propose and analyze a higher order continuous/discontinuous Galerkin methods for solving singularly perturbed convection-diffusion problems. Based on piecewise polynomial approximations of degree k ⩾ 1 , a uniform convergence rate O ( N − k ln k N ) in associated norm is established on Shishkin mesh, where N is the number of elements. Numerical experiments complement the theoretical results.
Keywords :
Local discontinuous Galerkin method , Finite element method , Uniform convergence , Shishkin mesh , convection-diffusion equation
Journal title :
Applied Numerical Mathematics
Serial Year :
2014
Journal title :
Applied Numerical Mathematics
Record number :
1529886
Link To Document :
بازگشت