Title of article :
A Padé compact high-order finite volume scheme for nonlinear Schrِdinger equations
Author/Authors :
Gao، نويسنده , , Wei and Li، نويسنده , , Hong and Liu، نويسنده , , Yang and Wei، نويسنده , , XiaoXi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
13
From page :
115
To page :
127
Abstract :
In this work, a Padé compact high-order finite volume scheme is presented for the solution of one-dimensional nonlinear Schrِdinger equations. The compact high-order finite volume schemes posses inherent conservation of the equations and high order accuracy within small stencils. Fourier error analysis demonstrates that the spectral resolution of the Padé compact finite volume scheme exceeds that of the standard finite volume schemes in terms of the same order of accuracy. Besides, the linear stability of the temporal discretization scheme is also performed by using the Fourier analysis. Numerical results are obtained for the nonlinear Schrِdinger equations with various initial and boundary conditions, which manifests high accuracy and validity of the Padé compact finite volume scheme.
Keywords :
Padé compact scheme , finite volume , Schrِdinger equation
Journal title :
Applied Numerical Mathematics
Serial Year :
2014
Journal title :
Applied Numerical Mathematics
Record number :
1529951
Link To Document :
بازگشت