Title of article :
The number of distinct part sizes in a random integer partition
Author/Authors :
Goh، نويسنده , , William M.Y and Schmutz، نويسنده , , Eric، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Abstract :
We prove a central limit theorem for the number of different part sizes in a random integer partition. If λ is one of the P(n) partitions of the integer n, let Dn(λ) be the number of distinct part sizes that λ has. (Each part size counts once, even though there may be many parts of a given size.) For any fixed x, #(λ: Dn(λ) ⩽ An + xBn}P(n) → 12π ∫−∞xℓ−t22dt as n → ∞, where An = (√6/π)n12 and Bn = (ρ6/2π − √54/π3)12n14.
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A