Title of article :
On a matrix partition conjecture
Author/Authors :
Brualdi، نويسنده , , Richard A and Hahn، نويسنده , , Ge?a and Horak، نويسنده , , Peter R. Kramer، نويسنده , , E.S and Mellendorf، نويسنده , , Stephen and Mesner، نويسنده , , Dale M، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
14
From page :
333
To page :
346
Abstract :
In 1977, Ganter and Teirlinck proved that any 2t × 2t matrix with 2t nonzero elements can be partitioned into four submatrices of order t of which at most two contain nonzero elements. In 1978, Kramer and Mesner conjectured that any mt × nt matrix with kt nonzero elements can be partitioned into mn submatrices of order t of which at most k contain nonzero elements. We show that this conjecture is true for some values of m, n, t and k but that it is false in general.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
1995
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1529982
Link To Document :
بازگشت