Title of article :
On subsets of finite abelian groups with no 3-term arithmetic progressions
Author/Authors :
Meshulam، نويسنده , , Roy، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Abstract :
Let G be a finite abelian group of odd order and let D(G) denote the maximal cardinality of a subset A ⊂ G which does not contain a 3-term arithmetic progression. It is shown that D(Zk1 ⊕ ⋯ ⊕ Zkn) ⩽ 2((k1 ⋯ kn/n). Together with results of Szemerédi and Heath-Brown it implies that there exists a β > 0 such that D(G) = O(∥G∥/(log ∥G∥)β) for all G.
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A