Title of article :
A Sharp Exponent Bound for McFarland Difference Sets withp=2
Author/Authors :
Ma، نويسنده , , Siu Lun and Schmidt، نويسنده , , Bernhard، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
6
From page :
347
To page :
352
Abstract :
We show that under the self-conjugacy condition a McFarland difference set withp=2 andf⩾2 in an abelian groupGcan only exist, if the exponent of the Sylow 2-subgroup does not exceed 4. The method also works for oddp(where the exponent bound ispand is necessary and sufficient), so that we obtain a unified proof of the exponent bounds for McFarland difference sets. We also correct a mistake in the proof of an exponent bound for (320, 88, 24)-difference sets in a previous paper.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
1997
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530262
Link To Document :
بازگشت