Title of article :
Progressions in Sequences of Nearly Consecutive Integers
Author/Authors :
Alon، نويسنده , , Noga and Zaks، نويسنده , , Ayal، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
11
From page :
99
To page :
109
Abstract :
Fork>2 andr⩾2, letG(k, r) denote the smallest positive integergsuch that every increasing sequence ofgintegers {a1, a2, …, ag} with gapsaj+1−aj∈{1, …,emsp14;r}, 1⩽j⩽g−1 contains ak-term arithmetic progression. Brown and Hare proved thatG(k, 2)>(k−1)/2 (34)(k−1)/2and thatG(k, 2s−1)>(sk−2/ek)(1+o(1)) for alls⩾2. Here we improve these bounds and prove thatG(k, 2)>2k−O(k)and, more generally, that for every fixedr⩾2 there exists a constantcr>0 such thatG(k, r)>rk−cr kfor allk.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
1998
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530332
Link To Document :
بازگشت