Title of article :
On the Number of Permutations Avoiding a Given Pattern
Author/Authors :
Alon، نويسنده , , Noga and Friedgut، نويسنده , , Ehud، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
8
From page :
133
To page :
140
Abstract :
Let σ∈Sk and τ∈Sn be permutations. We say τ contains σ if there exist 1⩽x1<x2<…<xk⩽n such that τ(xi)<τ(xj) if and only if σ(i)<σ(j). If τ does not contain σ we say τ avoids σ. Let F(n, σ)=|{τ∈Sn ∣ τ avoids σ}|. Stanley and Wilf conjectured that for any σ∈Sk there exists a constant c=c(σ) such that F(n, σ)⩽cn for all n. Here we prove the following weaker statement: For every fixed σ∈Sk, F(n, σ)⩽cnγ*(n), where c=c(σ) and γ*(n) is an extremely slow growing function, related to the Ackermann hierarchy.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2000
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530452
Link To Document :
بازگشت