Title of article :
A Combinatorial Interpretation of Punctured Partitions
Author/Authors :
DʹAntona، نويسنده , , Ottavio M. and Munarini، نويسنده , , Emanuele، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
19
From page :
264
To page :
282
Abstract :
We give a combinatorial interpretation of punctured partitions (i.e., n-tuples (p1, p2, …, pn) of natural numbers such that p1+p2+…+pk=k whenever pk≠0) in terms of linear partitions of linearly ordered sets. As an application we give an explicit expression of the permanent (determinant) of a particular kind of Hessenberg matrices in terms of punctured partitions (i.e., linear partitions). Then we show that for suitable choices of the Hessenberg matrix these permanents give the number of the enriched (linear) partitions of a finite (linearly ordered) set or more generally the associated polynomials forming a sequence of (Newjonian) binomial type. Instances of these polynomials are the exponential, rising factorial, Laguerre, Abel, inverse-Abel, Mittag–Leffler polynomials. A further application deals with formal series inversion; in particular we derive an expression of elementary symmetric functions in terms of complete symmetric functions and vice versa.
Keywords :
enriched partitions , polynomial sequences of Newjonian type , polynomial sequences of binomial type , stirling numbers , Bell numbers , Lah numbers , linear partitions , Hessenberg matrices , punctured partitions , enriched linear partitions , generalized Fibonacci numbers
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2000
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530499
Link To Document :
بازگشت