Title of article :
Logarithmic Concavity and sl2(C)
Author/Authors :
Wagner، نويسنده , , David G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
4
From page :
383
To page :
386
Abstract :
We observe that for any logarithmically concave finite sequence a0, a1, …, an of positive integers there is a representation of the Lie algebra sl2(C) from which this logarithmic concavity follows. Thus, in applying this strategy to prove logarithmic concavity, the only issue is to construct such a representation naturally from given combinatorial data. As an example, we do this when aj is the number of j-element stable sets in a claw-free graph, reproving a theorem of Hamidoune.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2001
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530590
Link To Document :
بازگشت