Title of article :
Small Blocking Sets in Higher Dimensions
Author/Authors :
Sz?nyi، نويسنده , , Tam?s and Weiner، نويسنده , , Zsuzsa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
14
From page :
88
To page :
101
Abstract :
We show that small blocking sets in PG(n, q) with respect to hyperplanes intersect every hyperplane in 1 modulo p points, where q=ph. The result is then extended to blocking sets with respect to k-dimensional subspaces and, at least when p>2, to intersections with arbitrary subspaces not just hyperplanes. This can also be used to characterize certain non-degenerate blocking sets in higher dimensions. Furthermore we determine the possible sizes of small minimal blocking sets with respect to k-dimensional subspaces.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2001
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530598
Link To Document :
بازگشت