Title of article :
A Comment on the Hadamard Conjecture
Author/Authors :
de Launey، نويسنده , , Warwick and Gordon، نويسنده , , Daniel M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
5
From page :
180
To page :
184
Abstract :
Fix n. Let r(n) denote the largest number r for which there is an r×n (1, −1)-matrix H satisfying the matrix equation HH⊤=nIr. The Hadamard conjecture states that for n divisible by 4 we have r(n)=n. Let ε>0. In this paper, we show that the Extended Riemann Hypothesis and recent results on the asymptotic existence of Hadamard matrices imply that for n sufficiently large r(n)>(12−ε) n.
Keywords :
extended Riemann hypothesis , Hadamard matrices , orthogonal arrays
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2001
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530603
Link To Document :
بازگشت