Title of article :
Composite Fermions and Integer Partitions
Author/Authors :
Benjamin، نويسنده , , Arthur T. and Quinn، نويسنده , , Jennifer J. and Quinn، نويسنده , , John J. and Wَjs، نويسنده , , Arkadiusz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
8
From page :
390
To page :
397
Abstract :
We utilize the KOH theorem to prove the unimodality of integer partitions with at most a parts, all parts less than or equal to b, that are required to contain either repeated or consecutive parts. We connect this result to an open question in quantum physics relating the number of distinct total angular momentum multiplets of a system of N fermions, each with angular momentum ℓ, to those of a system in which each Fermion has angular momentum ℓ*=ℓ−N+1.
Keywords :
Unimodality , restricted integer partition , generating function
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2001
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530619
Link To Document :
بازگشت