Title of article :
On Four Colored Sets with Nondecreasing Diameter and the Erdős–Ginzburg–Ziv Theorem
Author/Authors :
Grynkiewicz، نويسنده , , David J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
A set X, with a coloring Δ:X→Zm, is zero-sum if ∑x∈XΔ(x)=0. Let f(m,r) (let fzs(m,2r)) be the least N such that for every coloring of 1,…,N with r colors (with elements from r disjoint copies of Zm) there exist monochromatic (zero-sum) m-element subsets B1 and B2, not necessarily the same color, such that (a) max(B1)−min(B1)⩽max(B2)−min(B2), and (b) max(B1)<min(B2). We show that fzs(m,4)=f(m,4).
Keywords :
zero sum , Rado , Ramsey , ascending wave.
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A