Title of article :
Random Walk in an Alcove of an Affine Weyl Group, and Non-colliding Random Walks on an Interval
Author/Authors :
Grabiner، نويسنده , , David J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
22
From page :
285
To page :
306
Abstract :
We use a reflection argument, introduced by Gessel and Zeilberger, to count the number of k-step walks between two points which stay within a chamber of a Weyl group. We apply this technique to walks in the alcoves of the classical affine Weyl groups. In all cases, we get determinant formulas for the number of k-step walks. One important example is the region m>x1>x2>…>xn>0, which is a rescaled alcove of the affine Weyl group Cn. If each coordinate is considered to be an independent particle, this models n non-colliding random walks on the interval (0, m). Another case models n non-colliding random walks on a circle.
Keywords :
random walk , affine Weyl group , Lattice path enumeration , Weyl chamber , alcove , reflection principle
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2002
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530685
Link To Document :
بازگشت