Title of article :
On Identifying Codes in Binary Hamming Spaces
Author/Authors :
Honkala، نويسنده , , Iiro and Lobstein، نويسنده , , Antoine، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
12
From page :
232
To page :
243
Abstract :
A binary code C⊆{0,1}n is called r-identifying, if the sets Br(x)∩C, where Br(x) is the set of all vectors within the Hamming distance r from x, are all nonempty and no two are the same. Denote by Mr(n) the minimum possible cardinality of a binary r-identifying code in {0,1}n. We prove that if ρ∈[0,1) is a constant, then limn→∞n−1 log2M⌊ρn⌋(n)=1−H(ρ), where H(x)=−x log2x−(1−x) log2(1−x). We also prove that the problem whether or not a given binary linear code is r-identifying is Π2-complete.
Keywords :
Hamming space , Identifying codes , covering codes , complexity.
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2002
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530737
Link To Document :
بازگشت