Title of article :
A zero-sum theorem
Author/Authors :
Bialostocki، نويسنده , , Arie and Bialostocki، نويسنده , , Guy and Schaal، نويسنده , , Daniel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
We determine the smallest integer n for which the following holds: if G is a nontrivial abelian group of order m, then every coloring of the integer set {1,2,…,n} by the elements of G, results a zero-sum solution to x1+x2+⋯+xm−1<xm. It turns out that n depends only on the order of G and is equal to m(m−1)+1. If G is cyclic, then we get an Erdös–Ginzburg–Ziv type generalization of a known result concerning a monochromatic solution of the above inequality in a 2-coloring of the positive integers.
Keywords :
zero-sum , Erd?s–Ginzburg–Ziv , Ramsey , Rado , Schur
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A