Title of article :
Generalized (P,ω)-partitions and generating functions for trees
Author/Authors :
Arima، نويسنده , , Isao and Tagawa، نويسنده , , Hiroyuki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
14
From page :
137
To page :
150
Abstract :
We introduce (P,R)-partitions as a generalization of the (P,ω)-partitions of Stanley. When P is a Gaussian poset the generating function for P-partitions with largest part at most n factors as ∏x∈P 1−qg(x)+n1−qg(x) for certain integers g(x). Although trees are not in general Gaussian posets, we show that if P is a tree then R can be chosen so that the generating function for (P,R)-partitions has a similar factorization.
Keywords :
(p , R)-partition , Edge labeling , Tree , generating function
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2003
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530816
Link To Document :
بازگشت