Title of article :
The toric Hilbert scheme of a rank two lattice is smooth and irreducible
Author/Authors :
Maclagan، نويسنده , , Diane and Thomas، نويسنده , , Rekha R. Thomas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
The toric Hilbert scheme of a lattice L⊆Zn is the multigraded Hilbert scheme parameterizing all homogeneous ideals I in S=k[x1,…,xn] such that the Hilbert function of the quotient S/I has value one for every g in the grading monoid G+=Nn/L. In this paper we show that if L is two-dimensional, then the toric Hilbert scheme of L is smooth and irreducible. This result is false for lattices of dimension three and higher as the toric Hilbert scheme of a rank three lattice can be reducible.
Keywords :
connectedness , toric Hilbert scheme , Codimension two , triangulations
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A