Title of article :
Counting polytopes via the Radon complex
Author/Authors :
Montellano-Ballesteros، نويسنده , , Juan José and Strausz، نويسنده , , Ricardo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
A convex polytope is the convex hull of a finite set of points. We introduce the Radon complex of a polytope—a subcomplex of an appropriate hypercube which encodes all Radon partitions of the polytopeʹs vertex set. By proving that such a complex, when the vertices of the polytope are in general position, is homeomorphic to a sphere, we find an explicit formula to count the number of d-dimensional polytope types with d+3 vertices in general position.
Keywords :
Convex polytopes , Polytopes types , Radonיs theorem , Separoids , Radon complex
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A