• Title of article

    Olsonʹs constant for the group Zp⊕Zp

  • Author/Authors

    Gao، نويسنده , , W.D. and Ruzsa، نويسنده , , I.Z. and Thangadurai، نويسنده , , R.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    19
  • From page
    49
  • To page
    67
  • Abstract
    Let G be a finite abelian group. By Ol(G), we mean the smallest integer t such that every subset A⊂G of cardinality t contains a non-empty subset whose sum is zero. In this article, we shall prove that for all primes p>4.67×1034, we have Ol(Zp⊕Zp)=p+Ol(Zp)−1 and hence we have Ol(Zp⊕Zp)⩽p−1+⌈2p+5 log p⌉. This, in particular, proves that a conjecture of Erdős (stated below) is true for the group Zp⊕Zp for all primes p>4.67×1034.
  • Journal title
    Journal of Combinatorial Theory Series A
  • Serial Year
    2004
  • Journal title
    Journal of Combinatorial Theory Series A
  • Record number

    1530906