Title of article :
On a hypercube coloring problem
Author/Authors :
ضstergإrd، نويسنده , , Patric R.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
6
From page :
199
To page :
204
Abstract :
Let χ k ¯ ( n ) denote the minimum number of colors necessary to color the n-dimensional hypercube so that no two vertices that are at a distance at most k from each other get the same color. In other words, this is the smallest number of binary codes with minimum distance k + 1 that form a partition of the n-dimensional binary Hamming space. It is shown that χ 2 ¯ ( n ) ∼ n and χ 3 ¯ ( n ) ∼ 2 n as n tends to infinity.
Keywords :
Vertex coloring , Hypercube , chromatic number , Binary code
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530936
Link To Document :
بازگشت