Title of article :
Inequalities between Littlewood–Richardson coefficients
Author/Authors :
Bergeron، نويسنده , , François and Biagioli، نويسنده , , Riccardo and Rosas، نويسنده , , Mercedes H. Rosas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to ordered pairs of partitions, holds for many infinite families of such pairs. We also show that the bounded height case can be reduced to checking that the conjecture holds for a finite number of pairs, for any given height. Moreover, we propose a natural generalization of the conjecture to the case of skew shapes.
Keywords :
symmetric functions , Schur positivity , partitions
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A