Title of article :
New families of atomic Latin squares and perfect 1-factorisations
Author/Authors :
Bryant، نويسنده , , Darryn and Maenhaut، نويسنده , , Barbara and Wanless، نويسنده , , Ian M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
17
From page :
608
To page :
624
Abstract :
A perfect 1 -factorisation of a graph G is a decomposition of G into edge disjoint 1 -factors such that the union of any two of the factors is a Hamiltonian cycle. Let p ⩾ 11 be prime. We demonstrate the existence of two non-isomorphic perfect 1-factorisations of K p + 1 (one of which is well known) and five non-isomorphic perfect 1-factorisations of K p , p . If 2 is a primitive root modulo p , then we show the existence of 11 non-isomorphic perfect 1-factorisations of K p , p and 5 main classes of atomic Latin squares of order p . Only three of these main classes were previously known. One of the two new main classes has a trivial autotopy group.
Keywords :
Atomic latin square , Totally symmetric , Even starter , hamiltonian cycle , Perfect 1-factorisation , Autotopy group
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531064
Link To Document :
بازگشت