Title of article
On the number of rectangulations of a planar point set
Author/Authors
Ackerman، نويسنده , , Eyal and Barequet، نويسنده , , Gill and Pinter، نويسنده , , Ron Y.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
20
From page
1072
To page
1091
Abstract
We investigate the number of different ways in which a rectangle containing a set of n noncorectilinear points can be partitioned into smaller rectangles by n (nonintersecting) segments, such that every point lies on a segment. We show that when the relative order of the points forms a separable permutation, the number of rectangulations is exactly the ( n + 1 ) st Baxter number. We also show that no matter what the order of the points is, the number of guillotine rectangulations is always the nth Schrِder number, and the total number of rectangulations is O ( 20 n / n 4 ) .
Keywords
Schrِder numbers , Rectangulations , Rectangular partitions , Guillotine partitions , Baxter permutations , Separable permutations
Journal title
Journal of Combinatorial Theory Series A
Serial Year
2006
Journal title
Journal of Combinatorial Theory Series A
Record number
1531101
Link To Document