• Title of article

    On the number of rectangulations of a planar point set

  • Author/Authors

    Ackerman، نويسنده , , Eyal and Barequet، نويسنده , , Gill and Pinter، نويسنده , , Ron Y.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    20
  • From page
    1072
  • To page
    1091
  • Abstract
    We investigate the number of different ways in which a rectangle containing a set of n noncorectilinear points can be partitioned into smaller rectangles by n (nonintersecting) segments, such that every point lies on a segment. We show that when the relative order of the points forms a separable permutation, the number of rectangulations is exactly the ( n + 1 ) st Baxter number. We also show that no matter what the order of the points is, the number of guillotine rectangulations is always the nth Schrِder number, and the total number of rectangulations is O ( 20 n / n 4 ) .
  • Keywords
    Schrِder numbers , Rectangulations , Rectangular partitions , Guillotine partitions , Baxter permutations , Separable permutations
  • Journal title
    Journal of Combinatorial Theory Series A
  • Serial Year
    2006
  • Journal title
    Journal of Combinatorial Theory Series A
  • Record number

    1531101