Title of article :
Sperner labellings: A combinatorial approach
Author/Authors :
Meunier، نويسنده , , Frédéric، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
14
From page :
1462
To page :
1475
Abstract :
In 2002, De Loera, Peterson and Su proved the following conjecture of Atanassov: let T be a triangulation of a d-dimensional polytope P with n vertices v 1 , v 2 , … , v n ; label the vertices of T by 1 , 2 , … , n in such a way that a vertex of T belonging to the interior of a face F of P can only be labelled by j if v j is on F; then there are at least n − d simplices labelled with d + 1 different labels. We prove a generalisation of this theorem which refines this lower bound and which is valid for a larger class of objects.
Keywords :
Labelling , Polytope , Polytopal body , Spernerיs lemma , Chain map , Fully-labelled simplex , triangulation
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531123
Link To Document :
بازگشت