Title of article
Sets of permutations that generate the symmetric group pairwise
Author/Authors
Blackburn، نويسنده , , Simon R.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
10
From page
1572
To page
1581
Abstract
The paper contains proofs of the following results. For all sufficiently large odd integers n, there exists a set of 2 n − 1 permutations that pairwise generate the symmetric group S n . There is no set of 2 n − 1 + 1 permutations having this property. For all sufficiently large integers n with n ≡ 2 mod 4 , there exists a set of 2 n − 2 even permutations that pairwise generate the alternating group A n . There is no set of 2 n − 2 + 1 permutations having this property.
Keywords
Alternating group , symmetric group , Local lemma , Subgroup covering
Journal title
Journal of Combinatorial Theory Series A
Serial Year
2006
Journal title
Journal of Combinatorial Theory Series A
Record number
1531133
Link To Document