Title of article :
New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming
Author/Authors :
Gijswijt، نويسنده , , Dion and Schrijver، نويسنده , , Alexander and Tanaka، نويسنده , , Hajime، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
We give a new upper bound on the maximum size A q ( n , d ) of a code of word length n and minimum Hamming distance at least d over the alphabet of q ⩾ 3 letters. By block-diagonalizing the Terwilliger algebra of the nonbinary Hamming scheme, the bound can be calculated in time polynomial in n using semidefinite programming. For q = 3 , 4 , 5 this gives several improved upper bounds for concrete values of n and d. This work builds upon previous results of Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (2005) 2859–2866] on the Terwilliger algebra of the binary Hamming scheme.
Keywords :
codes , Nonbinary codes , Delsarte bound , upper bounds , Terwilliger algebra , Block-diagonalization , semidefinite programming
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A