Title of article
The divisibility modulo 24 of Kloosterman sums on , m odd
Author/Authors
Charpin، نويسنده , , Pascale and Helleseth، نويسنده , , Tor and Zinoviev، نويسنده , , Victor، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
17
From page
322
To page
338
Abstract
In a previous paper, we studied the cosets of weight 4 of binary extended 3-error-correcting BCH codes of length 2 m (where m is odd). We expressed the number of codewords of weight 4 in such cosets in terms of exponential sums of three types, including the Kloosterman sums K ( a ) , a ∈ F ∗ . In this paper, we derive some congruences which link Kloosterman sums and cubic sums. This allows us to study the divisibility of Kloosterman sums modulo 24. More precisely, if we know the traces of a and of a 1 / 3 , we are able to evaluate K ( a ) modulo 24 and to compute the number of those a giving the same value of K ( a ) modulo 24.
Keywords
3-Error-correcting BCH code , Coset , Melas code , Irreducible code , divisibility , Kloosterman sum , Quadratic mapping , Jacobi symbol , Cubic sum , Inverse-cubic sum
Journal title
Journal of Combinatorial Theory Series A
Serial Year
2007
Journal title
Journal of Combinatorial Theory Series A
Record number
1531179
Link To Document