• Title of article

    The divisibility modulo 24 of Kloosterman sums on , m odd

  • Author/Authors

    Charpin، نويسنده , , Pascale and Helleseth، نويسنده , , Tor and Zinoviev، نويسنده , , Victor، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    17
  • From page
    322
  • To page
    338
  • Abstract
    In a previous paper, we studied the cosets of weight 4 of binary extended 3-error-correcting BCH codes of length 2 m (where m is odd). We expressed the number of codewords of weight 4 in such cosets in terms of exponential sums of three types, including the Kloosterman sums K ( a ) , a ∈ F ∗ . In this paper, we derive some congruences which link Kloosterman sums and cubic sums. This allows us to study the divisibility of Kloosterman sums modulo 24. More precisely, if we know the traces of a and of a 1 / 3 , we are able to evaluate K ( a ) modulo 24 and to compute the number of those a giving the same value of K ( a ) modulo 24.
  • Keywords
    3-Error-correcting BCH code , Coset , Melas code , Irreducible code , divisibility , Kloosterman sum , Quadratic mapping , Jacobi symbol , Cubic sum , Inverse-cubic sum
  • Journal title
    Journal of Combinatorial Theory Series A
  • Serial Year
    2007
  • Journal title
    Journal of Combinatorial Theory Series A
  • Record number

    1531179