Title of article :
Diameter graphs of polygons and the proof of a conjecture of Graham
Author/Authors :
Foster، نويسنده , , Jim and Szabo، نويسنده , , Tamas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
11
From page :
1515
To page :
1525
Abstract :
We show that for an n-gon with unit diameter to have maximum area, its diameter graph must contain a cycle, and we derive an isodiametric theorem for such n-gons in terms of the length of the cycle. We then apply this theorem to prove Grahamʹs 1975 conjecture that the diameter graph of a maximal 2m-gon ( m ⩾ 3 ) must be a cycle of length 2 m − 1 with one additional edge attached to it.
Keywords :
discrete geometry , Diameter graph , Reuleaux polygons , Extremal polygons , Isodiametric theorem
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2007
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531253
Link To Document :
بازگشت