Title of article :
On complete subsets of the cyclic group
Author/Authors :
Hamidoune، نويسنده , , Y.O. and Lladَ، نويسنده , , A.S. and Serra، نويسنده , , O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
1279
To page :
1285
Abstract :
A subset X of an abelian G is said to be complete if every element of G can be expressed as a nonempty sum of distinct elements from X. ⊂ Z n be such that all the elements of A are coprime with n. Solving a conjecture of Erdős and Heilbronn, Olson proved that A is complete if n is a prime and if | A | > 2 n . Recently Vu proved that there is an absolute constant c, such that for an arbitrary large n, A is complete if | A | ⩾ c n , and conjectured that 2 is essentially the right value of c. w that A is complete if | A | > 1 + 2 n − 4 , thus proving the last conjecture.
Keywords :
Subset sums , Complete sets
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2008
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531336
Link To Document :
بازگشت