Title of article :
Eppsteinʹs bound on intersecting triangles revisited
Author/Authors :
Gabriel Nivasch، نويسنده , , Gabriel and Sharir، نويسنده , , Micha، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Let S be a set of n points in the plane, and let T be a set of m triangles with vertices in S. Then there exists a point in the plane contained in Ω ( m 3 / ( n 6 log 2 n ) ) triangles of T. Eppstein [D. Eppstein, Improved bounds for intersecting triangles and halving planes, J. Combin. Theory Ser. A 62 (1993) 176–182] gave a proof of this claim, but there is a problem with his proof. Here we provide a correct proof by slightly modifying Eppsteinʹs argument.
Keywords :
Selection Lemma , Triangle , Simplex , k-set
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A