Title of article :
Restricted set addition: The exceptional case of the Erdős–Heilbronn conjecture
Author/Authors :
Kلrolyi، نويسنده , , Gyula، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Let A ≠ B be nonempty subsets of the group of integers modulo a prime p. If p ⩾ | A | + | B | − 2 , then at least | A | + | B | − 2 different residue classes can be represented as a + b , where a ∈ A , b ∈ B and a ≠ b . This result complements the solution of a problem of Erdős and Heilbronn obtained by Alon, Nathanson, and Ruzsa.
Keywords :
Erd?s–Heilbronn conjecture , Structural theory of set addition , Combinatorial Nullstellensatz , Restricted set addition
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A