Title of article
On the asymptotic existence of cocyclic Hadamard matrices
Author/Authors
de Launey، نويسنده , , Warwick and Kharaghani، نويسنده , , H.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
14
From page
1140
To page
1153
Abstract
Let q be an odd natural number. We prove there is a cocyclic Hadamard matrix of order 2 10 + t q whenever t ⩾ 8 ⌊ log 2 ( q − 1 ) 10 ⌋ . We also show that if the binary expansion of q contains N ones, then there is a cocyclic Hadamard matrix of order 2 4 N − 2 q .
Keywords
Binary cocycles , Asymptotic existence , Hadamard matrices , Orthogonal designs , Complex complementary sequences , Relative difference sets , Complex Hadamard matrices , Regular extension-group actions on designs
Journal title
Journal of Combinatorial Theory Series A
Serial Year
2009
Journal title
Journal of Combinatorial Theory Series A
Record number
1531437
Link To Document