Title of article :
Equations resolving a conjecture of Rado on partition regularity
Author/Authors :
Alexeev، نويسنده , , Boris and Tsimerman، نويسنده , , Jacob، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
3
From page :
1008
To page :
1010
Abstract :
A linear equation L is called k-regular if every k-coloring of the positive integers contains a monochromatic solution to L. Richard Rado conjectured that for every positive integer k, there exists a linear equation that is ( k − 1 ) -regular but not k-regular. We prove this conjecture by showing that the equation ∑ i = 1 k − 1 2 i 2 i − 1 x i = ( − 1 + ∑ i = 1 k − 1 2 i 2 i − 1 ) x 0 has this property. onjecture is part of problem E14 in Richard K. Guyʹs book “Unsolved Problems in Number Theory”, where it is attributed to Radoʹs 1933 thesis, “Studien zur Kombinatorik”.
Keywords :
Colorings , Ramsey Theory , Partition Regularity
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2010
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531523
Link To Document :
بازگشت