Title of article :
An asymptotic solution to the cycle decomposition problem for complete graphs
Author/Authors :
Bryant، نويسنده , , Darryn and Horsley، نويسنده , , Daniel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
27
From page :
1258
To page :
1284
Abstract :
Let m 1 , m 2 , … , m t be a list of integers. It is shown that there exists an integer N such that for all n ⩾ N , the complete graph of order n can be decomposed into edge-disjoint cycles of lengths m 1 , m 2 , … , m t if and only if n is odd, 3 ⩽ m i ⩽ n for i = 1 , 2 , … , t , and m 1 + m 2 + ⋯ + m t = ( n 2 ) . In 1981, Alspach conjectured that this result holds for all n, and that a corresponding result also holds for decompositions of complete graphs of even order into cycles and a perfect matching.
Keywords :
Cycle decompositions , Graph decompositions
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2010
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531543
Link To Document :
بازگشت