• Title of article

    An asymptotic solution to the cycle decomposition problem for complete graphs

  • Author/Authors

    Bryant، نويسنده , , Darryn and Horsley، نويسنده , , Daniel، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    27
  • From page
    1258
  • To page
    1284
  • Abstract
    Let m 1 , m 2 , … , m t be a list of integers. It is shown that there exists an integer N such that for all n ⩾ N , the complete graph of order n can be decomposed into edge-disjoint cycles of lengths m 1 , m 2 , … , m t if and only if n is odd, 3 ⩽ m i ⩽ n for i = 1 , 2 , … , t , and m 1 + m 2 + ⋯ + m t = ( n 2 ) . In 1981, Alspach conjectured that this result holds for all n, and that a corresponding result also holds for decompositions of complete graphs of even order into cycles and a perfect matching.
  • Keywords
    Cycle decompositions , Graph decompositions
  • Journal title
    Journal of Combinatorial Theory Series A
  • Serial Year
    2010
  • Journal title
    Journal of Combinatorial Theory Series A
  • Record number

    1531543