Title of article :
On a generalisation of the Dipper–James–Murphy conjecture
Author/Authors :
Hu، نويسنده , , Jun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
16
From page :
78
To page :
93
Abstract :
Let r , n be positive integers. Let e be 0 or an integer bigger than 1. Let v 1 , … , v r ∈ Z / e Z and K r ( n ) be the set of Kleshchev r-partitions of n with respect to ( e ; Q ) , where Q : = ( v 1 , … , v r ) . The Dipper–James–Murphy conjecture asserts that K r ( n ) is the same as the set of ( Q , e ) -restricted bipartitions of n if r = 2 . In this paper we consider an extension of this conjecture to the case where r > 2 . We prove that any multi-core λ = ( λ ( 1 ) , … , λ ( r ) ) in K r ( n ) is a ( Q , e ) -restricted r-partition. As a consequence, we show that in the case e = 0 , K r ( n ) coincides with the set of ( Q , e ) -restricted r-partitions of n and also coincides with the set of ladder r-partitions of n.
Keywords :
Crystal basis , Fock spaces , Ladder multipartitions , Ladder nodes , Lakshimibai–Seshadri paths , Kleshchev multipartitions
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531552
Link To Document :
بازگشت