Title of article
A noncrossing basis for noncommutative invariants of
Author/Authors
Lehner، نويسنده , , Franz، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
13
From page
257
To page
269
Abstract
Noncommutative invariant theory is a generalization of the classical invariant theory of the action of SL ( 2 , C ) on binary forms. The dimensions of the spaces of invariant noncommutative polynomials coincide with the numbers of certain noncrossing partitions. We give an elementary combinatorial explanation of this fact by constructing a noncrossing basis of the homogeneous components. Using the theory of free stochastic measures this provides a combinatorial proof of the Molien–Weyl formula in this setting.
Keywords
Free Probability , Free stochastic measure , noncrossing partitions , Free cumulants , Symbolic method , Hilbert–Poincaré series , Noncommutative invariants , Plücker relations
Journal title
Journal of Combinatorial Theory Series A
Serial Year
2011
Journal title
Journal of Combinatorial Theory Series A
Record number
1531565
Link To Document