Title of article :
Laurent polynomials and Eulerian numbers
Author/Authors :
Erman، نويسنده , , Daniel and Smith، نويسنده , , Gregory G. and Vلrilly-Alvarado، نويسنده , , Anthony، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
396
To page :
402
Abstract :
Duistermaat and van der Kallen show that there is no nontrivial complex Laurent polynomial all of whose powers have a zero constant term. Inspired by this, Sturmfels poses two questions: Do the constant terms of a generic Laurent polynomial form a regular sequence? If so, then what is the degree of the associated zero-dimensional ideal? In this note, we prove that the Eulerian numbers provide the answer to the second question. The proof involves reinterpreting the problem in terms of toric geometry.
Keywords :
Intersection theory , regular sequence , Permutations , Toric variety
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531575
Link To Document :
بازگشت