Title of article :
Expected Frobenius numbers
Author/Authors :
Aliev، نويسنده , , Iskander and Henk، نويسنده , , Martin and Hinrichs، نويسنده , , Aicke Hinrichs، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Given a primitive positive integer vector a, the Frobenius number F ( a ) is the largest integer that cannot be represented as a non-negative integral combination of the coordinates of a. We show that for large instances the order of magnitude of the expected Frobenius number is (up to a constant depending only on the dimension) given by its lower bound.
Keywords :
Frobenius number , Reverse AGM inequality , Knapsack polytope , Geometry of numbers
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A