Title of article :
A proof of the linearity conjecture for k-blocking sets in , p prime
Author/Authors :
Lavrauw، نويسنده , , M. and Storme، نويسنده , , L. and Van de Voorde، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
808
To page :
818
Abstract :
In this paper, we show that a small minimal k-blocking set in PG ( n , q 3 ) , q = p h , h ⩾ 1 , p prime, p ⩾ 7 , intersecting every ( n − k ) -space in 1 ( mod q ) points, is linear. As a corollary, this result shows that all small minimal k-blocking sets in PG ( n , p 3 ) , p prime, p ⩾ 7 , are F p -linear, proving the linearity conjecture (see Sziklai, 2008 [9]) in the case PG ( n , p 3 ) , p prime, p ⩾ 7 .
Keywords :
Blocking sets , Linearity conjecture , Linear sets
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531603
Link To Document :
بازگشت