Title of article :
Chain enumeration of k-divisible noncrossing partitions of classical types
Author/Authors :
Kim، نويسنده , , Jang Soo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
20
From page :
879
To page :
898
Abstract :
We give combinatorial proofs of the formulas for the number of multichains in the k-divisible noncrossing partitions of classical types with certain conditions on the rank and the block size due to Krattenthaler and Müller. We also prove Armstrongʹs conjecture on the zeta polynomial of the poset of k-divisible noncrossing partitions of type A invariant under a 180° rotation in the cyclic representation.
Keywords :
k-divisible noncrossing partitions , Chain enumeration , Zeta polynomials , Noncrossing partitions of finite Coxeter groups
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531608
Link To Document :
بازگشت