Title of article :
Constructions of asymptotically shortest k-radius sequences
Author/Authors :
Jerzy W. Jaromczyk، نويسنده , , Jerzy W. and Lonc، نويسنده , , Zbigniew and Truszczy?ski، نويسنده , , Miros?aw، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Let k be a positive integer. A sequence s over an n-element alphabet A is called a k-radius sequence if every two symbols from A occur in s at distance of at most k. Let f k ( n ) denote the length of a shortest k-radius sequence over A. We provide constructions demonstrating that (1) for every fixed k and for every fixed ε > 0 , f k ( n ) = 1 2 k n 2 + O ( n 1 + ε ) and (2) for every k = ⌊ n α ⌋ , where α is a fixed real such that 0 < α < 1 , f k ( n ) = 1 2 k n 2 + O ( n β ) , for some β < 2 − α . Since f k ( n ) ⩾ 1 2 k n 2 − n 2 k , the constructions give asymptotically optimal k-radius sequences. Finally, (3) we construct optimal 2-radius sequences for a 2p-element alphabet, where p is a prime.
Keywords :
k-radius sequences , Universal cycles , Cycle decompositions of graphs
Journal title :
Journal of Combinatorial Theory Series A
Journal title :
Journal of Combinatorial Theory Series A