Title of article :
The genus of a random chord diagram is asymptotically normal
Author/Authors :
Chmutov، نويسنده , , Sergei and Pittel، نويسنده , , Boris، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
102
To page :
110
Abstract :
Let G n be the genus of a two-dimensional surface obtained by gluing, uniformly at random, the sides of an n-gon. Recently Linial and Nowik proved, via an enumerational formula due to Harer and Zagier, that the expected value of G n is asymptotic to ( n − log n ) / 2 for n → ∞ . We prove a local limit theorem for the distribution of G n , which implies that G n is asymptotically Gaussian, with mean ( n − log n ) / 2 and variance ( log n ) / 4 .
Keywords :
Chord diagrams , Random , genus , Distribution , Limit
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2013
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531837
Link To Document :
بازگشت