Title of article :
The Jacobi–Stirling numbers
Author/Authors :
Andrews، نويسنده , , George E. and Egge، نويسنده , , Eric S. and Gawronski، نويسنده , , Wolfgang and Littlejohn، نويسنده , , Lance L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
16
From page :
288
To page :
303
Abstract :
The Jacobi–Stirling numbers were discovered as a result of a problem involving the spectral theory of powers of the classical second-order Jacobi differential expression. Specifically, these numbers are the coefficients of integral composite powers of the Jacobi expression in Lagrangian symmetric form. Quite remarkably, they share many properties with the classical Stirling numbers of the second kind which are the coefficients of integral powers of the Laguerre differential expression. In this paper, we establish several properties of the Jacobi–Stirling numbers and its companions including combinatorial interpretations, thereby extending and supplementing known recent contributions to the literature.
Keywords :
Left-definite theory , Jacobi polynomials , Legendre–Stirling numbers , Jacobi–Stirling numbers , stirling numbers
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2013
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531850
Link To Document :
بازگشت