Title of article :
Proof of a positivity conjecture on Schur functions
Author/Authors :
Chen، نويسنده , , William Y.C. and Ren، نويسنده , , Anne X.Y. and Yang، نويسنده , , Arthur L.B. Yang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
5
From page :
644
To page :
648
Abstract :
In the study of Zeilbergerʼs conjecture on an integer sequence related to the Catalan numbers, Lassalle proposed the following conjecture. Let ( t ) n denote the rising factorial, and let Λ R denote the algebra of symmetric functions with real coefficients. If φ is the homomorphism from Λ R to R defined by φ ( h n ) = 1 / ( ( t ) n n ! ) for some t > 0 , then for any Schur function s λ , the value φ ( s λ ) is positive. In this paper, we provide an affirmative answer to Lassalleʼs conjecture by using the Laguerre–Pólya–Schur theory of multiplier sequences.
Keywords :
Multiplier sequence , Totally positive sequence , Symmetric function , Schur function
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2013
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1531873
Link To Document :
بازگشت